Cantharidin Impedes Activity of Glutathione S-Transferase in the Midgut of Helicoverpa armigera Hübner
نویسندگان
چکیده
Previous investigations have implicated glutathione S-transferases (GSTs) as one of the major reasons for insecticide resistance. Therefore, effectiveness of new candidate compounds depends on their ability to inhibit GSTs to prevent metabolic detoxification by insects. Cantharidin, a terpenoid compound of insect origin, has been developed as a bio-pesticide in China, and proves highly toxic to a wide range of insects, especially lepidopteran. In the present study, we test cantharidin as a model compound for its toxicity, effects on the mRNA transcription of a model Helicoverpa armigera glutathione S-transferase gene (HaGST) and also for its putative inhibitory effect on the catalytic activity of GSTs, both in vivo and in vitro in Helicoverpa armigera, employing molecular and biochemical methods. Bioassay results showed that cantharidin was highly toxic to H. armigera. Real-time qPCR showed down-regulation of the HaGST at the mRNA transcript ranging from 2.5 to 12.5 folds while biochemical assays showed in vivo inhibition of GSTs in midgut and in vitro inhibition of rHaGST. Binding of cantharidin to HaGST was rationalized by homology and molecular docking simulations using a model GST (1PN9) as a template structure. Molecular docking simulations also confirmed accurate docking of the cantharidin molecule to the active site of HaGST impeding its catalytic activity.
منابع مشابه
Identification and characterization of hydrolytic enzymes from the midgut of the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)
Midgut hydrolytic enzymes of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) were identified and partially characterized. Km, Vmax, optimum pH, and specific activity were determined for proteolytic enzymes and αamylases. All hydrolytic enzyme activity had an optimum pH value in the alkaline pH range. We observed major serine protease activity, together with minor cysteine-like activity, th...
متن کاملThe phytohormone precursor OPDA is isomerized in the insect gut by a single, specific glutathione transferase.
Oxylipins play important roles in stress signaling in plants. The compound 12-oxophytodienoic acid (cis-OPDA) is an early biosynthetic precursor of jasmonic acid (JA), the key phytohormone orchestrating the plant anti-herbivore defense. When consumed by feeding Lepidopteran larvae, plant-derived cis-OPDA suffers rapid isomerization to iso-OPDA in the midgut and is excreted in the frass. Unlike ...
متن کاملFunctional roles of cadherin, aminopeptidase-N and alkaline phosphatase from Helicoverpa armigera (Hübner) in the action mechanism of Bacillus thuringiensis Cry2Aa
A pyramid strategy combining the Cry1A and Cry2A toxins in Bt crops has been widely used throughout the world to delay pest adaption to transgenic crops and broaden the insecticidal spectrum. Midgut membrane-bound cadherin (CAD), aminopeptidase-N (APN) and alkaline phosphatase (ALP) are important for Cry1A toxicity in some lepidopteran larvae, but the proteins that bind Cry2A in the midgut of t...
متن کاملElevated carboxylesterase activity contributes to the lambda-cyhalothrin insensitivity in quercetin fed Helicoverpa armigera (Hübner)
Quercetin as one of the key plant secondary metabolite flavonol is ubiquitous in terrestrial plants. In this study, the decrease in sensitivity to lambda-cyhalothrin was observed in quercetin-fed Helicoverpa armigera larvae. In order to figure out the mechanisms underlying the decreased sensitivity of H. armigera larvae to lambda-cyhalothrin by quercetin induction, the changes in carboxylestera...
متن کاملNegative Effects of a Nonhost Proteinase Inhibitor of ~19.8 kDa from Madhuca indica Seeds on Developmental Physiology of Helicoverpa armigera (Hübner)
An affinity purified trypsin inhibitor from the seed flour extracts of Madhuca indica (MiTI) on denaturing polyacrylamide gel electrophoresis showed that MiTI consisted of a single polypeptide chain with molecular mass of ~19.8 kDa. MiTI inhibited the total proteolytic and trypsin-like activities of the midgut proteinases of Helicoverpa armigera larvae by 87.51% and 76.12%, respectively, at con...
متن کامل